
CS302 Summer 2012 1

CS 302: Introduction to Programming in Java

Lecture 11

Yinggang Huang

CS302 Summer 2012 2

Review

● How do we call a method?

● What are method inputs called?

● How many values can be returned from a

method?

● Write a method header called doSomething

that returns a boolean and has 2 parameters:

an int and a String

CS302 Summer 2012 3

Why do we use Methods?

● Increase modularity

● Increase readability / maintainability

● Reduce redundancy

● Ex. P1:

● Multiple Validation loops -> a single

validation method

● Multiple modes -> multiple methods (better

style, easier debugging, etc.)

CS302 Summer 2012 4

Calling Methods

Is
method
static?

Yes No

ClassName.methodName(arguments)

ex. Math.pow(2, 4);

objectName.method(arguments)

ex. in.nextLine() or rand.nextInt(10)

●For now, we will only create static methods

●If calling static methods that are defined within the same class that they
are being called from, the ClassName. identifier can be dropped from the
method call (just call the method using its name)

CS302 Summer 2012 5

Arguments vs Parameters

● Arguments (book calls them "parameter values")
get passed to the method

● Parameters (book calls them "parameter
variables") are defined in the method header

● Arguments must match the parameter definitions
in type, order, and number

● Do not need to have the same name

● Argument values get COPIED into the parameter
variables

● Changing the parameter does NOT change the
original argument

CS302 Summer 2012 6

Args vs Parameters Example

int a = 4, b = 5;

int area = rectArea(a, b);

...

public static int rectArea(int width, int height)

{

...

}

Blue = arguments
Red = parameters

Arguments must match parameters in number, order,
and type

●a's value is copied to width
●b's value is copied to height

CS302 Summer 2012 7

Variable Scope

● Just like what we talked about in ifs and loops

● A variable declared within braces is ONLY valid within

those braces

● That means you can't use variables defined in a method

outside of that method!!!

● Can use the same variable name in different scopes

Ex.

public static double rectArea(int length, int width)

public static double cubeVolumn(int lenght, int width, int depth)

CS302 Summer 2012 8

Return Statement

● Immediatly exits the method

● Can return

● Literal – return 4;

● Variable – return x;

● Result of an expression – return (x && y || (3+z < 5));

● Result of another method call – return doSomething(x);

● Return type must match the type in the method header

● If the method returns nothing, it is of type void

CS302 Summer 2012 9

Void methods

● Ex. public static void

main(String[] args)

● Used when the method

doesn't return anything

● Often used for displaying

things

● Can still use the return

statement to exit the

method immediatly

● In this case the

statement is simply:

return;

printStars(3, 4);

...

public static void printStars(int
width, int height)

{

 for (int i = 0; i < width; i++)

 for (int j = 0; j < width; j ++)

 print("*");

 print("\n");

}

CS302 Summer 2012 10

Return vs. Break

for (int i = 0; i < 10; i++)

{

 if (i == 5) break;

}

Vs

for (int i = 0; i < 10; i++)

{

 if (i == 5) return;

}

● Break simply breaks
out of the current loop

● What would happen
in a nested loop?

● Return immediatly
exits the method and
returns the return
value (if any)

● What would happen
in a nested loop?

CS302 Summer 2012 11

Return within Conditionals

public static String getDay(int day)

{

 if (day == 1) return "Sunday";

 if (day == 2) return "Monday";

 if (day == 3) return "Tuesday";

 ...

}

● Note we don't need else ifs because the return statement

exits the method immediatly!

● If we do branch every possible traversal must have a

return statement!

Practice 1 (take home)
• Remember we had a practice (refer to

HopeAndChange.java on the course website under
“In-Class Example Code” tab)

• Let’s do the same thing but now we use a static
method to calculate change given coin value (25 for
quarter, 10 for dime, 5 for nickel, 1 for penny), coin
name (“quarter”, “dime”, “nickel”, “penny”), change
(centsLeft defined previously). So the parameter
values for this method should be coinValue,
coinName, centsLeft with appropriate data types,
respectively.

• The method should be able to print out number of
coins (quarters, dimes, nickels or pence) AND return
the remainder (centsLeft).

• In the main method, call the method for the number
of quarters, dimes, nickels, pennies.

CS302 Summer 2012

12

13

Copying Arrays

int[] testArray1 = {1, 2, 3};

● What value does testArray1 hold? (What type of

variables are arrays?)

● What happens if I do:

● int[] testArray 2 = testArray1;

● If we want to actually copy an array:

● Arrays.copyOf(arrayToCopy, n);

– n = how many elements to copy over – if n is <

arrayToCopy.length will only copy first n; if n is >

arrayToCopy.length will copy over the entire array and give

you (n – arrayToCopy.length) extra indices

CS302 Summer 2012 14

Using Arrays with Methods

● What happens when arguments are passed to

a method?

● What does the array variable hold?

● When arrays are passed to methods the

address of the array is the value copied over

● When array elements are passed over, things

work as usual

● Be VERY careful with this

CS302 Summer 2012 15

Array – Method examples

int[] myArray = {1, 2, 3};

printArray(myArray);

public static void printArray(int[] array)

{

 for (int i = 0; i < array.length; i++)

 {

 System.out.println(array[i]);

 }

}

CS302 Summer 2012 16

Array – Method examples

int[] myArray = {1, 2, 3};

multiplyArray(myArray);

public static void multiplyArray(int[] array)

{

 for (int i = 0; i < array.length; i++)

 {

 array[i] = array[i] * 2;

 }

}

CS302 Summer 2012 17

Array – Method examples

int[] myArray = {1, 2, 3};

int x = square(myArray[0]);

public static int square(int a)

{

 return a*a;

}

Practice 2 (find a substring)
 Write a static method indexOf(String in, String sought, int

fromIndex)

 Returns the index within this string (in) of the first occurrence of
the specified substring (sought), starting at the specified index
(fromIndex). It returns -1 if not found. For example:

 If in = “ababcababc”, sought = “abc”, fromIndex = 0, then the
method returns 2

 If in = “ababcababc”, sought = “abc”, fromIndex = 3, then the
method returns 7

 If in = “ababcababc”, sought = “acb”, fromIndex = 0, then the
method returns -1 (no match in String in)

 Click on
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html#i
ndexOf(java.lang.String, int) for more info

CS302 Summer 2012 18

http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html
http://docs.oracle.com/javase/6/docs/api/java/lang/String.html

CS302 Summer 2012 19

2-D Arrays (Matrix)

● It is often useful to have more than one row of

data

● Solution: multi-dimensional arrays

● 2-D Array is basically a table

● Has rows and columns

● Remember – No changing length of either

rows or columns once they have been

initialized!

CS302 Summer 2012 20

Declaration and Initialization

● 2 ways

● If we don't know the data yet:

– double[][] data = new double[3][4];

● If we know the data:

– double[][] data = {

{ 1, 17, 35, 19},

{ 2, 19, 30, 21},

{ 3, 18, 33, 22}

 };

type
2 sets of square
brackets indicate
2D array

Number
of rows

Number of
columns

Rows (comma
sperated)

Columns (comma
sperated within braces)

CS302 Summer 2012 21

Accessing Elements

● double[][] data = { { 1, 17, 35, 19},

● { 2, 19, 30, 21},

● { 3, 18, 33, 22} };

● Each element now has a row and column value thus specify each to
get the element you want

● double val = data[0][0]; //val = 1

● val = data[2][3]; // val = 22

● REMEBER BOTH ROWS AND COLUMNS ARE 0-INDEXED!!!

Row Column

CS302 Summer 2012 22

Row and Column Length

● Row length = same as with 1D array

● int rowLength = data.length;

● Column length = must specify column to get

the length of whatever column you specify

● int column0Length = data[0].length;

● For this class all columns will have the same

length

CS302 Summer 2012 23

Working with 2D Arrays

● Often use nested for loops

● Ex. print values:

for (int row = 0; row < data.length; row++)

{

 for (int col = 0; col < data[0].length; col++)

 {

 System.out.print(data[row][col] + "\t");

 }

 System.out.println();

}

CS302 Summer 2012

24

Recap

● Arrays are constructs that store multiple values of the

same type

● They are used to simplify code and to simplify the

manipulation of lots of data

Practice 3 (Maybe take home)

Write a static method to print out
all elements in a 2D int array

public static void
print2DArray(int[][] array)

Test if the method works fine by
calling it in main method,
remember to declare and initialize
a 2D array to be passed into the
method

CS302 Summer 2012 25

